設W為一渦柱(vertex tube),則由角動量守恆,其內的渦度變化可寫成
$$ \vec w(t) = \frac{\partial \vec x}{\partial \vec x_0} \vec w_0 $$
上面的式子可由此圖看出;若左右長度比為1:r,則左柱的體積是右柱的r倍,而由於渦柱中整體角動量守恆,因此右柱柱內的渦度需為左柱的r倍。圖片來源
對上式做全微分,則有
$$ \frac{D}{Dt} \vec w = \frac{\partial}{\partial \vec x_0} \left( \frac{D}{Dt} \vec x \right) \vec w_0 = \frac{\partial \vec u}{\partial \vec x_0} \vec w_0 $$
利用連鎖律可得
$$ \frac{D}{Dt} \vec w = \frac{\partial \vec u}{\partial \vec x} \frac{\partial \vec x}{\partial \vec x_0} \vec w_0 = \frac{\partial \vec u}{\partial \vec x} \vec w = \left(\vec w \cdot\nabla \right) \vec u $$
由$\nabla \times \left( \vec A \times \vec B \right)$的公式,再加上不可壓縮的假設,則有
$$ \frac{\partial}{\partial t} \vec w = \nabla \times (\vec u \times \vec w) $$
流體的Navier-Stokes方程式可寫成
$$ \frac{\partial}{\partial t} \vec u + \left( \vec u \cdot \nabla \right) \vec u = -\frac{\nabla P}{\rho} - \nabla \Psi + \nu \left( \nabla^2 \vec u + \frac{1}{3} \nabla \left( \nabla \cdot \vec u\right) \right) $$